
Towards Real-time Vietnamese Traffic Sign
Recognition on Embedded Systems

Phuong-Nam Tran
Dept. of Computing Fundamental

FPT University
Ho Chi Minh City, Vietnam

tpnam0901@gmail.com

Nhat Truong Pham
Dept. of Integrative Biotechnology

Sungkyunkwan University
Suwon, Republic of Korea
truongpham96@skku.edu

Nam Phan Van Hai
AiTA Lab, Dept. of Computing Fundamental

FPT University
Ho Chi Minh City, Vietnam
nampvhse182309@fpt.edu.vn

Duc Tai Phan
AiTA Lab, Dept. of Computing Fundamental

FPT University
Ho Chi Minh City, Vietnam
phantaiduc2005@gmail.com

Cuong Tuan Nguyen
Faculty of Engineering

Vietnamese-German University
Binh Duong, Vietnam
cuong.nt2@vgu.edu.vn

Duc Ngoc Minh Dang∗
AiTA Lab, Dept. of Computing Fundamental

FPT University
Ho Chi Minh City, Vietnam

ducdnm2@fe.edu.vn

Abstract—In recent years, AI development has brought many
significant changes in various aspects of our daily lives. In-
tegrating AI technology into various applications has revolu-
tionized multiple domains, and one particularly vital area is
traffic sign recognition, which significantly enhances driver safety.
This paper presents an approach to traffic sign recognition
specifically designed for the Jetson Nano 2GB device. By utilizing
the YOLOv8 Nano model, the proposed approach achieves a
remarkable frame rate of up to 32 frames per second (FPS).
To optimize inference speed on Jetson with limited memory, the
approach incorporates TensorRT and quantization techniques. In
addition, this paper introduces a dataset called the Vietnamese
Traffic Sign Detection Database 100 (VTSDB100). This dataset
is an extension of the VTSDB46 dataset and encompasses a
comprehensive collection of 100 different classes of traffic signs.
These signs were captured in diverse locations within Ho Chi
Minh City, Vietnam, providing a rich and diverse dataset for
training and evaluating traffic sign recognition models. An ex-
tensive experiment and analysis are also conducted using various
object detection methods on the VTSDB100 dataset. The findings
highlight the potential of deploying the proposed approach on
resource-constrained devices and provide valuable insights for
further research and development in the field of AI-powered
driver safety systems.

Index Terms—Traffic Sign Recognition; Object Detection;
Quantization; Vietnamese Traffic Sign dataset; Deep learning

I. INTRODUCTION

Traffic sign recognition (TSR) has been a well-studied topic,
but its recent implementation in the Internet of Things (IoT)
domain faces limitations due to hardware constraints, mak-
ing it challenging to deploy high-performance deep learning
models on IoT devices. Furthermore, achieving high frame
rates on these devices poses additional difficulties, especially
when memory and hardware resources are limited. As a result,
deep learning approaches become costly to implement on such
devices. To tackle this issue, we leverage various techniques

∗ Corresponding author: Duc Ngoc Minh Dang (ducdnm2@fe.edu.vn)

and frameworks to reduce the model size and memory require-
ments for running deep learning models efficiently.

Moreover, the availability of comprehensive traffic sign
datasets in Vietnam is still limited, preventing the development
of supportive driver applications. In the work proposed by
Nguyen et al. [1], a dataset named VTSDB46 was introduced,
comprising 46 traffic signs captured exclusively in Vietnam.
However, this dataset suffers from imbalanced class distribu-
tions and lacks diverse environments and locations. To address
these shortcomings, we propose a new dataset called Viet-
namese Traffic Sign Detection Database 100 (VTSDB100),
which serves as an extended version of VTSDB46. Indeed, the
VTSDB100 dataset, with its over 90,000 samples, provides a
significant amount of data for training, validating, and testing
traffic sign detection models. The VTSDB100 dataset’s size,
diversity, and suitability for real-life scenarios contribute to
the development and evaluation of accurate and robust traffic
sign detection systems. These systems can be implemented in
real-world applications to enhance traffic safety and efficiency.

Furthermore, this paper conducts experiments using various
recent deep learning methods to assess their performance on
the VTSDB100 dataset. For two-stage object detection, Faster
R-CNN [2] is selected due to its high accuracy. As for one-
stage object detection, popular models such as You Only
Look Once (YOLO) [3] and its variants, YOLOX [4] and
RetinaNet [5], are utilized to observe their performance on our
dataset. These experiments establish a baseline performance on
VTSDB100, serving as a valuable reference for future research
in this field.

Our primary contributions in this paper cover three main
aspects:

1) We introduce a new dataset, Vietnamese Traffic Sign
Detection Database 100 (VTSDB100), which extends
the previous VTSDB46 dataset, providing a more com-
prehensive collection of Vietnamese traffic signs for
object recognition research.



2) We conduct a baseline performance evaluation on the
VTSDB100 dataset, utilizing various recent deep learn-
ing models. This serves as a valuable reference for future
research in the field.

3) We successfully deploy deep learning models on a
resource-constrained Jetson Nano device with 2GB
RAM, achieving high-speed performance through the
utilization of quantization techniques and TensorRT.

The remainder of this paper is organized as follows. In
Section II, we provide an overview of existing research on
TSR. Then, in Section III, we explain the deep learning
architecture used in our experiment and how we compressed
the model to make it suitable for running on IoT devices.
Next, we present the results of our experiments on different
deep learning architectures using the VTSDB100 dataset and
IoT devices in Section IV. Finally, we wrap up our study
in Section V by selecting the best model that showed the
most effective performance. We also discuss its potential
applications and future developments in this field.

II. RELATED WORK

Various techniques have been employed to address the chal-
lenge of traffic sign recognition, with deep learning methods
being the most popular and effective approach. As artificial
intelligence continues to advance, object detection techniques
have evolved to become faster and more accurate. One notable
technique in the field of object detection is the introduction
of two-stage object detection, proposed by Faster R-CNN [2].
This approach allows deep learning models to achieve real-
time object detection capabilities. However, researchers have
since proposed a simplified alternative known as one-stage
object detection. One of the most popular methods in this ar-
chitecture is YOLO [3]. YOLO takes a single holistic approach
to object detection, directly predicting bounding boxes and
class probabilities in a single pass. This design allows for faster
inference speed compared to two-stage methods. Building
upon the YOLO architecture, subsequent variants such as
YOLOv8 [6], YOLOv9 [7], and the most recent iteration,
YOLOv10 [8], have been introduced. These iterations aim to
further improve the performance and accuracy of the original
YOLO approach. Additionally, other object detection architec-
tures have emerged based on the YOLO framework, including
YOLOX [4] and YOLO-NAS [9]. These architectures leverage
the strengths of YOLO while introducing novel enhancements
and optimizations. Overall, the development and evolution of
these object detection architectures, particularly the YOLO
family, have significantly contributed to advancing the field
and expanding the potential applications of real-time object
detection, particularly in the realm of IoT devices.

Traffic sign detection has been a popular topic in recent
years, and various methods and datasets have been introduced
to bring the application of this field into real life. German
Traffic Sign Detection Benchmark dataset (GTSDB) [10] is
one of the most popular datasets in Germany that is created
for traffic sign object detection. GTSDB consists of 900
images along with annotations that provide information about

where the traffic signs are located. However, this dataset
doesn’t specify the type of traffic sign present in each image
and is mainly designed for benchmarking purposes rather
than practical use in real-world scenarios. Another popular
dataset is the Tsinghua-Tencent 100K [11] dataset which is
considered the most suitable for meeting real-time application
requirements in China. This dataset consists of 90,000 Tencent
Street View panoramas, with around 30,000 instances of traffic
signs. It captures images under different lighting and weather
conditions, reflecting real-world scenarios. The Tsinghua-
Tencent 100K dataset offers a high-quality collection that can
be effectively utilized for traffic sign applications in China.
However, it is important to note that this dataset is captured in
a panoramic format, which may result in reduced performance
when applied to regular cameras. In the case of Vietnam,
using existing datasets such as the Tsinghua-Tencent 100K
may result in lower performance due to the discrepancies and
potential absence of Vietnamese traffic signs in those datasets.
This is because the traffic sign designs and characteristics can
vary between different countries. VTSDB46 [1] is the latest
traffic sign dataset available in Vietnam, comprising a substan-
tial collection of 80,000 samples across 46 different classes.
The dataset was captured in numerous locations throughout
Ho Chi Minh City, Vietnam. With its quality recording and
accurate labeling, VTSDB46 offers a high-quality dataset
specifically tailored to Vietnamese traffic signs. This dataset
is suitable for real-time traffic sign recognition applications
in Vietnam. However, VTSDB46 still has limitations, as it
does not encompass all the traffic sign classes found in
Vietnam. Therefore, further efforts are needed to create a more
comprehensive dataset for complete traffic sign recognition
applications in the country.

III. METHODOLOGY

A. Vietnamese Traffic Sign Detection Database 100 -
VTSDB100

The VTSDB46 [1] dataset is a collection of traffic sign
data recorded in 12 districts of Ho Chi Minh City, Vietnam.
It focuses on traffic signs in urban environments, taking
into account variations in lighting, background, and weather
conditions. However, this dataset only includes 46 types of
traffic signs from the four main groups of Vietnamese traffic
signs. To expand the dataset, we created VTSDB100, which
contains 100 classes covering the most common Vietnamese
traffic signs.

The VTSDB100 dataset contains more than 90,000 sam-
ples, which were created by augmenting over 35,000 original
samples. These original samples were captured using a GoPro
camera. To annotate the dataset, we utilize a tool called Labe-
lImg. This tool provides a user-friendly interface and efficient
functionality for annotation purposes. The annotation process
involves manually labeling the 35,000 samples and converting
the dataset into a YOLO format, which is commonly used
for object detection tasks. During the annotation process, we
focus on labeling only those traffic signs that can be easily
identified by human eyes. If a traffic sign causes confusion or



its content is not fully visible and readable, we do not label
it. For instance, if a traffic sign displays only the number ”5”
instead of the complete ”50” indicating a speed limit of 50,
we do not include it in the annotations.

The VTSDB100 dataset is split into two subsets: training,
validation, and testing sets. Before dividing the VTSDB100
dataset, we performed data augmentation using the Albu-
mentations [12] library, which provides various augmentation
methods, to augment the dataset. These methods include ran-
dom cropping with a probability of 1.0, random adjustments
to brightness and contrast with a probability of 0.5, random
gamma adjustments with a probability of 0.4, random rotation
up to 20 degrees with a probability of 0.4, random rain
effects with a probability of 0.2, random fog effects with
a probability of 0.2, and random contrast-limited adaptive
histogram equalization with a probability of 0.4. To create the
testing set, we followed a process of randomly selecting 100
samples per class from the VTSDB100 dataset. This approach
ensured that the testing set contained a diverse representation
of samples from each class which provides an independent
evaluation of the model’s performance. After creating the
testing set, we further divided the remaining samples into
two subsets: the training set and the validation set. For the
validation set, we continued randomly selecting 100 samples
per class from the remaining dataset. The random selection
process took into account the availability of samples for each
class. Therefore, the number of samples in the validation
and testing sets may be smaller than the target of 10,000
samples. Table I illustrates the number of samples of training,
validation, and test subsets in the VTSDB100 dataset.

TABLE I
THE DISTRIBUTION OF TRAINING, VALIDATION AND TESTING SETS IN THE

VTSDB100 DATASET.

Subset Number of samples
Training 77,499

Validation 7,496
Testing 7,519

B. Proposed methods

1) Object detection: In our work, we evaluated various
object detection models using our dataset. Specifically, we
examined three recent methods from the YOLO (You Only
Look Once) family, namely YOLOv8 [6], YOLOv9 [7], and
YOLOv10 [8]. These methods are known for their one-stage
object detection approach, offering a balance between speed
and performance with minimal parameters. The feature pyra-
mid network [13] employed in the YOLO family contributes to
its high performance and efficiency. To accommodate the use
of IoT devices, we focused on training and experimenting with
the smallest and fastest models within each YOLO method.
However, if larger architectures demonstrated superior perfor-
mance, they were also considered in our work. In addition
to the YOLO family, we also experimented with YOLOX
Nano [4], which introduces a novel approach to object detec-
tion. Unlike other YOLO methods, YOLOX Nano predicts an

object’s location without relying on anchor boxes. It employs a
decoupled head architecture, separating class predictions from
bounding box regression. By combining anchor-free detection,
the decoupled head, and advanced techniques, YOLOX Nano
achieves improved object detection performance, making it
suitable for real-time tasks.

In our two-stage object detection experiments, we utilized
the Faster R-CNN [2] architecture with the MobileNetV3 [14]
backbone. Faster R-CNN is one of the earliest and most
widely used methods known for its high performance in object
detection tasks. The Faster R-CNN architecture consists of
two main components. First, a convolutional neural network
(CNN) is employed to extract features from the input image.
These features capture hierarchical representations of the im-
age, enabling the network to understand the visual content.
The second component is the region proposal network (RPN),
which operates on the extracted features. The RPN predicts
regions of interest or anchor boxes that likely contain objects.
These regions are potential candidates for object detection.
Once the regions of interest are identified, a fully connected
layer is utilized to predict the class labels and refine the bound-
ing box coordinates for the detected objects. The strength
of Faster R-CNN lies in its two-stage network architecture.
By leveraging the feature extraction capabilities of CNNs and
the region proposal mechanism, Faster R-CNN achieves high
accuracy in object detection. However, due to the two-stage
process, the speed of Faster R-CNN is slower compared to
one-stage architectures.

2) Choosing IoT device: Deploying a deep learning model
on an IoT device is indeed crucial for bringing the application
into real-life scenarios. In the case of a system, it is essential to
consider the constraints of power supply, hardware resources,
and cost-effectiveness. To address these requirements, we have
chosen the Jetson Nano 2GB as the baseline platform for
our application. The Jetson Nano 2GB is a cost-effective IoT
device with limited RAM but offers acceptable performance
for deep learning tasks. Despite having only 2GB of RAM,
the presence of CUDA cores on the Jetson Nano 2GB enables
efficient computation for deep learning models. CUDA cores
are parallel processors specifically designed for accelerating
deep learning workloads, providing a significant boost in
performance compared to traditional CPUs. By utilizing the
Jetson Nano 2GB, we can deploy the deep learning model
for cars, where low power consumption and limited hardware
resources are critical.

On the other hand, the Jetson Orin Nano 8GB is a more
powerful option compared to the Jetson Nano. It has a GPU
that contains eight times the number of CUDA cores compared
to the Jetson Nano. Hence, it can handle more complex deep-
learning calculations and models. The Jetson Orin also has
better RAM, which allows for larger models to be loaded
and run in real time. However, there are some drawbacks
to using the Jetson Orin. Firstly, it is more expensive than
the Jetson Nano, so the cost of implementing an application
using the Jetson Orin would be higher. Additionally, the power
supply becomes a challenge with the Jetson Orin. While the



Jetson Nano only utilizes 5V power supply, the Jetson Orin
needs a minimum of 15V power supply to function properly.
Therefore, additional power considerations and costs need to
be taken into account when deploying in real-life application.

3) Model compression: To enhance performance with lim-
ited 2GB RAM, it is important to select the appropriate
framework and deep learning model. In this project, we utilize
the TensorRT framework, specifically designed for NVIDIA
Jetson devices. TensorRT is a software development kit that
enables efficient deep learning inference on NVIDIA GPUs. It
is optimized for the Jetson Nano, enabling high-performance
deep-learning models. To integrate our model with TensorRT,
we first convert our PyTorch model to the ONNX format to
ensure compatibility. Then, we apply a quantization process
to the ONNX model. Quantization involves converting the
model’s data type from float32 to int8, reducing the size of
model parameters, and improving model speed. However, it
is important to note that the quantization process has some
limitations. One limitation is that the accuracy of the model
may decrease due to the limited number of available data
types with int8. Finally, we convert the model from ONNX to
TensorRT format using the conversion provided by NVIDIA.
The final conversion takes place on Jetson devices to ensure
TensorRT package compatibility while the other conversions
and quantization processes are performed on the server.

4) Workflow: The design for the TSR system is depicted
in Fig. 1. The process starts with the Jetson Nano receiving
an image from the car’s camera. The Jetson Nano then uses
deep learning to analyze the image and predict the location
and type of the traffic sign. To track the traffic signs, a simple
tracking method is used, which calculates the distance between
the predicted bounding box’s center and the historical center
of the bounding box. The pair with the minimum distance
is selected and compared against a threshold value. If the
distance exceeds the threshold, a new ID is assigned to the
traffic sign. If the distance is below the threshold, the traffic
sign retains its previous ID.

Once the tracking ID is obtained, the relevant information,
such as the bounding box coordinates, class label, and tracking
ID, is added to a tracklet. A tracklet is a database element
that maps the track ID to a list of bounding boxes and
corresponding class labels. Each entry in the tracklet represents
the location and type of the traffic sign at a specific frame in
the past. The length of the tracklet can vary depending on the
implementation, typically 10 frames in our experiments.

Before sending notifications to the driver, a class filter algo-
rithm is applied to minimize false predictions. The complete
message is only sent to the driver if the number of elements
in the tracklet is larger than a certain threshold. In such cases,
the traffic sign type assigned to the message is determined by
the most frequently occurring class within the tracklet. This
approach helps reduce false predictions caused by noise and
other factors.

IV. EXPERIMENTS

A. Model setup

To optimize the performance of all models, we employ
the default hyperparameters as described in their works. We
change the batch size to 32 and train these models for a total
of 50 epochs. During training, we employ an early stopping
strategy where the models are evaluated on the validation
dataset after each epoch, and the weights are saved based on
the best results metric value obtained on the validation dataset.
To initialize the model weights, we utilize pre-trained models
from the COCO dataset for all methods. This approach enables
the models to leverage the knowledge learned from a large and
diverse dataset, which can help improve their performance and
reduce the training cost.

All the models are experimented on four different environ-
ments: Nvidia K80, Intel Core i9 12700K, Jetson Orin Nano,
and Jetson Nano. The Intel Core i9 12700K and Nvidia K80
are components of a workstation. The Intel Core i9 12700K
serves as the CPU, and the Nvidia K80 acts as the GPU. This
workstation has 64GB of RAM and 1TB of SSD memory.
The Jetson Orin Nano is an IoT device developed by NVIDIA
that features 1024 CUDA cores and 8GB of RAM. The Jetson
Nano is another NVIDIA IoT device but with fewer resources.
It has only 128 CUDA cores and 2GB of RAM. All these
environments are set up on Linux systems. The Jetson Nano
uses Ubuntu 16.04, the Jetson Orin utilizes Ubuntu 20.04, and
the workstation is set up with Debian Bookworm.

B. Model performance

1) Metrics: To evaluate both model performance and speed,
we utilize two common metrics: mean average precision
(mAP) and multiply-accumulate operations (MACs). mAP is
a widely used metric in computer vision, specifically for
assessing object detection algorithms or models. It calculates
the average precision across all classes in the model, providing
insights into the accuracy of predictions for different object
classes. In our experiment, we employ the COCO API to
evaluate model performance, resulting in a mAP@50 with an
intersection over the union threshold of 0.5 and a mAP@50:95
with an intersection over the union threshold ranging from 0.5
to 0.95 with a step size of 0.05.

MACs are used to measure the complexity and speed of the
model. They count the number of multiply and add operations
performed by the deep learning model while ignoring other
operations. Another metric for evaluating model speed is
floating-point operations per second (FLOPs), which counts
the number of floating-point operations in a deep learning
model per second. Both MACs and FLOPs are metrics that
indicate the speed or efficiency of a deep learning model based
on the number of operations it performs. However, the values
obtained for MACs and FLOPs may vary for the same archi-
tecture depending on how the researcher implements them. To
address this variation, we use a Python library called Thop.
This library considers only the number of multiplications in
the deep learning model and ignores all the other operations,



Camera
Jetson Nano 2GB

Notification

Frame Object
Detection

Tracking
Algorithm

Bbox

Class

Bbox

Class

Update tracklet

Track ID

Track
history

Class filter

Bbox

Track ID

Class

Fig. 1. Real-Time Traffic Sign Recognition Workflow on Jetson Nano 2GB using Object Detection with Integrated Tracking Algorithm.

making the result value more general. In addition, the MACs
value obtained using this library is approximately half of the
FLOPs value using the other library.

2) Results and analysis: Table II illustrates the performance
of different deep learning models on the VTSDB100 dataset.
We aimed to find a suitable model for IoT devices that have
high performance and low latency. Therefore we focused on
using small models for training and evaluation while also
including some large models for performance comparison.
As shown in the table, we can see that RetinaNet [5] with
ResNet50 [15] backbone achieved excellent results during
training with mAP@50 of 0.985 and mAP@50:95 of 0.840.
However, its performance significantly decreased on both the
validation and testing sets, which occurred due to overfitting
on the training set. On the other hand, YOLOv8 Nano [6],
which has a smaller backbone, performed better than Reti-
naNet on the validation and testing datasets. The YOLOv8
Nano model has a compact architecture and incorporates a
feature pyramid network, which allows it to capture better
features while maintaining high-speed performance and min-
imal parameters. This makes YOLOv8 Nano a more suitable
choice for IoT devices, where resource constraints are impor-
tant to consider. Interestingly, the performance of YOLOv10
Nano [8], a newer version of the YOLO series, did not surpass
that of YOLOv8 Nano. YOLOv10 Nano showed a slight
decrease in performance when evaluated on our validation and
testing sets using the mAP@50:95 metric.

When comparing the MACs and speed of these models,
YOLOv8 Nano [6] stands out as the fastest among them,
except for YOLOX Nano [4], as shown in Table III. The av-
erage inference speed in the table is calculated by the average
inference time of all samples in the validation dataset. Despite
having fewer parameters, YOLOv10 Nano [8] still takes longer
for inference compared to YOLOv8 Nano. YOLOv8 Nano
has over 0.5 million parameters but smaller MACs, resulting
in faster inference times. YOLOv8 Nano’s inference time is
up to 2 ms faster than YOLOv10 Nano on the Tesla K80

and 16 ms faster on the Intel i9-12900K under the same
testing conditions. However, the smaller number of parameters
in YOLOv10 Nano still makes it worth further research in
the future, considering it achieves approximately the same
mAP as YOLOv8 Nano. On the other hand, YOLOX Nano
demonstrates high speed and low memory requirements due to
its anchor-free algorithm. This makes YOLOX Nano suitable
for deployment on IoT devices that have lower hardware capa-
bilities compared to the Jetson Nano 2G. However, YOLOX
Nano’s performance is worse than the other models, and it
further decreases when applying techniques like quantization
to reduce the size and latency of the models. While achieving
high speed on different hardware, when implemented on the
Jetson Nano using the TensorRT framework, YOLOX Nano
appears to be slower than YOLOv8 Nano.

Our experiments with the dataset and various hardware,
led us to select YOLOv8 Nano as the model for conversion
from PyTorch to TensorRT, specifically for running on the
Jetson Nano 2GB in real-life applications. Deploying real-time
applications on the Jetson Nano presents challenges due to its
limited RAM and CUDA cores. When running a model with
an input size of 640x640, it consumes a significant amount
of RAM, leading to either inference failures or significantly
slower performance. Additionally, the performance is affected
by the input from the camera, especially with high-resolution
cameras that require more RAM for resizing in the pre-
process and post-process methods. To address these issues,
we have made modifications to the model by changing the
input size from 640x640 to 480x480 for inference. We have
also performed a fine-tuning process to adapt to this input size
on the trained model. With these adjustments, we achieved a
frame rate of up to 32 FPS for 720p videos on the Jetson
Nano 2GB. However, the FPS may decrease with higher-
resolution cameras, as it affects the pre-processing and post-
processing methods. For optimal performance on this device,
a 480p camera resolution is recommended. However, lower
resolutions sacrifice detection range due to information loss



TABLE II
PERFORMANCE COMPARISON OF VARIOUS DEEP LEARNING MODELS ON THE VTSDB100 DATASET

Method Variant Training (%) Validation (%) Testing (%)
mAP@50 mAP@50:95 mAP@50 mAP@50:95 mAP@50 mAP@50:95

YOLOv10 Nano 0.974 0.809 0.969 0.796 0.979 0.808
YOLOv8 Nano 0.973 0.810 0.969 0.800 0.979 0.810
YOLOv8 Small 0.979 0.834 0.974 0.819 0.984 0.831
YOLOv8 Medium 0.980 0.856 0.975 0.838 0.986 0.851
YOLOX Nano 0.954 0.728 0.942 0.713 0.944 0.708

RetinaNet Resnet50 0.985 0.840 0.959 0.777 0.979 0.815
Faster R-CNN MobileNetV3-Large 0.975 0.823 0.954 0.764 0.970 0.793

TABLE III
COMPARISON OF INFERENCE SPEED ACROSS DIFFERENT ARCHITECTURES

Method Variant Params (M) MACs (G) Average Inference Speed (ms)
Tesla K80 Intel i9-12900K Jetson Orin Jetson Nano

YOLOv10 Nano 2.839 4.527 12.785 57.568 39.912 131.350
YOLOv8 Nano 3.346 4.862 10.638 41.999 35.262 82.767
YOLOv8 Small 11.174 14.430 21.088 91.008 40.785 111.717
YOLOv8 Medium 25.914 39.692 48.758 199.242 44.255 335.377
YOLOX Nano 0.916 1.328 4.273 15.788 29.959 83.744

RetinaNet Resnet50 34.255 154.598 352.348 3089.883 N/A N/A
Faster R-CNN MobileNetV3-Large 19.457 4.726 45.983 244.619 N/A N/A

in the image.

V. CONCLUSIONS

In this study, we have introduced VTSDB100, which stands
for the Vietnamese Traffic Sign Database 100. This database
consists of traffic sign data collected in Ho Chi Minh City,
Vietnam. The purpose of VTSDB100 is to bring the applica-
tion of self-driving cars closer to real-life scenarios in Vietnam.
Our experiments have demonstrated the feasibility of running
deep learning models on IoT devices with limited RAM. This
implementation involves techniques such as quantization and
selecting suitable inputs for IoT devices. Furthermore, we have
conducted an extensive evaluation of various deep learning
models for object detection. This evaluation provides valuable
insights for choosing the most effective method for production
purposes.

In our future work, we plan to integrate the location of
traffic signs on Google Maps into IoT devices. This integration
will allow for the real-time updating of traffic signs, enabling
drivers to receive notifications about upcoming signs before
they are visible to the camera. Additionally, we will explore
label methods such as active learning to reduce the human
effort required for future labeling tasks.

REFERENCES

[1] D. T. Nguyen, M. K. Phan, P.-N. Tran, and D. N. M. Dang, “Vietnamese
traffic sign recognition using deep learning,” in Proceedings of the 2024
International Conference on Intelligent Information Technology. New
York, NY, USA: Association for Computing Machinery, 2024.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–
1149, 2017.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, real-time object detection,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[4] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding yolo
series in 2021,” arXiv preprint arXiv:2107.08430, 2021.

[5] R. Del Prete, M. D. Graziano, and A. Renga, “RetinaNet: A deep
learning architecture to achieve a robust wake detector in sar images,”
in 2021 IEEE 6th International Forum on Research and Technology for
Society and Industry (RTSI), 2021, pp. 171–176.

[6] R. Varghese and S. M., “YOLOv8: A novel object detection algorithm
with enhanced performance and robustness,” in 2024 International
Conference on Advances in Data Engineering and Intelligent Computing
Systems (ADICS), 2024, pp. 1–6.

[7] C.-Y. Wang, I.-H. Yeh, and H. Liao, “YOLOv9: Learning
what you want to learn using programmable gradient
information,” ArXiv, vol. abs/2402.13616, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:267770251

[8] A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han,
and G. Ding, “YOLOv10: Real-time end-to-end object
detection,” ArXiv, vol. abs/2405.14458, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:269983404

[9] S. Aharon, Louis-Dupont, Ofri Masad, K. Yurkova, Lotem Fridman,
Lkdci, E. Khvedchenya, R. Rubin, N. Bagrov, B. Tymchenko, T. Keren,
A. Zhilko, and Eran-Deci, “Super-Gradients,” 2021. [Online]. Available:
https://zenodo.org/record/7789328

[10] A. F. De Souza, C. Fontana, F. Mutz, T. A. de Oliveira, M. Berger,
A. Forechi, J. de Oliveira Neto, E. de Aguiar, and C. Badue, “Traffic
sign detection with VG-RAM weightless neural networks,” in The 2013
International Joint Conference on Neural Networks (IJCNN), 2013, pp.
1–9.

[11] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, “Traffic-
sign detection and classification in the wild,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2110–
2118.

[12] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin,
and A. A. Kalinin, “Albumentations: Fast and flexible image
augmentations,” Information, vol. 11, no. 2, 2020. [Online]. Available:
https://www.mdpi.com/2078-2489/11/2/125

[13] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
936–944.

[14] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan, G. Chu,
V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le, “Searching
for MobileNetV3,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), 2019, pp. 1314–1324.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.


